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Parton shower evolution
• For this talk, we need to understand what a parton 

shower does.

• We need not the computer code, but an evolution 
equation that is implemented by the computer code.

• There are many choices, not all of which can be 
described by a precise evolution equation.

• I describe a virtuality ordered shower of the type that 
Zoltan Nagy (DESY) and I are working on.  

• I take the spin averaged, leading color version.
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• Showers develop in “shower time.”

• Hardest interactions first.

•                              , where        is virtuality of splitting.Q2

The evolution time

Real time picture Shower time picture

t = log(Q2
0/Q2)
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(pi + pj)2

=
1

2pi · pj + p2
i + p2

j
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2pi · pj

if p2
i � 2pi · pj and p2

j � 2pi · pj .

pi + pj

pi

pj

Why virtuality?
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• The state
��ρ

�
corresponds to the function ρ.

• The state evolves:
��ρ(t)

�
.

• Use basis vectors
�
{p, f, c}m

��.

• ρ({p, f, c}m) =
�
{p, f, c}m

��ρ
�
.

Statistical states
• Let ρ({p, f, c}m) be the probability to have m
final state partons (plus two initial state partons)
with designated momenta, flavors, and colors.
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• Define a measurement function F as a bra vector.

• Result of measurement for partonic state
��{p, f, c}m

�
is

�
F

��{p, f, c}m

�

• Vector corresponding to completely inclusive
measurement is

�
1
��:
�
1
��{p, f, c}m

�
= 1

Measurement functions
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d

dt
U(t, t�) = [HI(t)− V(t)]U(t, t�)

V(t) = virtual splitting operator

HI(t) = real splitting operator

Evolution equation
The shower state evolves in shower time.
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• This suffices to determine V from HI.

Probability conservation
• Evolution does not change the cross section:

• Since

• this implies

(1|U(t, t�) = (1|

�
1
��[HI(t)− V(t)] = 0

d

dt
U(t, t�) = [HI(t)− V(t)]U(t, t�)
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Here N is the Sudakov exponential,

Shower form of evolution
U(t3, t1) = N (t3, t1) +

� t3

t1

dt2 U(t3, t2)HI(t2)N (t2, t1)

N (t, t�) = T exp
�
−

� t

t�
dτ V(τ)

�

The Sudakov factor represents the probability not to split.
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An obvious question

• Is this going to sum large logarithms?
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Yes

• The splitting probabilities have the right soft and 
collinear singularities.

• Parton splitting is iterated.

• So how could it fail?
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No

• It has been known since the 1980s that exponentiation 
of double logs comes from emissions ordered in angles.

• The angle ordering comes from quantum coherence.

• So you need a shower ordered in angles, not virtuality.

• The virtuality ordered shower is doomed.
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dσ

dp⊥dY

• There are large logarithms log(M2
Z/p2

⊥).

• Measure the p⊥ of the Z-boson for p2
⊥ �M2

Z ,

• We know how to sum these in QCD.

⊥Logarithms of p

• Consider A + B → Z + X
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dσ

dp⊥dY
≈

�
d
2b

(2π)2
e
ib·p⊥

×
�

a,b

� 1

xa

dηa

ηa

� 1

xb

dηb

ηb
fa/A

�
ηa, C

2
/b2

�
fb/B

�
ηb, C

2
/b2

�

× exp

�
−

� M2

C2/b2

dk2
⊥

k2
⊥

�
A(αs(k2

⊥)) log
�

M
2

k2
⊥

�
+ B(αs(k2

⊥))
��

×
�

a�,b�

H
(0)
a�b� Ca�a

�
xa

ηa
,αs

�
C

2

b2

��
Cb�b

�
xb

ηb
,αs

�
C

2

b2

��
.

A(αs) = 2 CF
αs

2π
+ 2 CF

�
CA

�
67
18
− π2

6

�
− 5 nf

9

� � αs

2π

�2
+ · · · ,

B(αs) = −4
αs

2π
+

�
−197

3
+

34nf

9
+

20π2

3
− 8nfπ2

27
+

8ζ(3)
3

�� αs

2π

�2
+ · · · ,

Ca�a(z,αs) = δa�aδ(1− z) +
αs

2π

�
δa�a

�
4
3

(1− z) +
2
3

δ(1− z)
�
π2 − 8

��
+ δag z(1− z)

�

C = 2e−γExA =

�
M2

s
eY xB =

�
M2

s
e−Y

The QCD answer,
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αs(M2)n log(b2M2)n+1

αs(M2)n log(b2M2)2n

• In exponent,

not

but

• The most important part is the exponentiation in b-space.

dσ

dp⊥dY
≈

�
d
2b

(2π)2
e
ib·p⊥

×
�

a,b

� 1

xa

dηa

ηa

� 1

xb

dηb

ηb
fa/A

�
ηa, C

2
/b2

�
fb/B

�
ηb, C

2
/b2

�

× exp

�
−

� M2

C2/b2

dk2
⊥

k2
⊥

�
A(αs(k2

⊥)) log
�

M
2

k2
⊥

�
+ B(αs(k2

⊥))
��

×
�

a�,b�

H
(0)
a�b� Ca�a

�
xa

ηa
,αs

�
C

2

b2

��
Cb�b

�
xb

ηb
,αs

�
C

2

b2

��
.
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dσ

dp⊥dY
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d
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�
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What we might hope for,
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d

dt

�
b, Y

��ρ(t)
�

=
�
b, Y

��HI(t)− V(t)
��ρ(t)

�

• Start with the Fourier transform of the cross section.

• Use the shower evolution equation.

• Use what we know about the operators involved.

�
b, Y

��ρ(t)
�

=
�

dp⊥
(2π)2

eip⊥·b�p⊥, Y
��ρ(t)

�

Analytical approach
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The basic physics

• The Z-boson gets transverse momentum because of 
recoils against initial state radiation. (Parisi & 
Petronzio)
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to remain non-zero.

• The probability not to emit in the shaded triangle
is the Sudakov exponential.

• Only emissions with k2
⊥ < 1/b2 allow

�
b, Y

��ρ(t)
�

• There is a certain region of possible emissions.
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dσ

dp⊥dY
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Exponentiation

Result
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Variations

• How about other types of showers that could be 
obtained from our virtuality ordered shower by a 
simple modification?

- Catani-Seymour dipole shower.

- Angle ordered shower.

- kT ordered shower.

• Note: comments may not apply to any existing 
shower code.
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Catani-Seymour dipole 
shower

• Use momentum mapping of 
Catani-Seymour dipole 
scheme.

• Z-boson gets recoil from 
first emitted gluon.

• Recoil from gluons emitted 
later is absorbed by gluons 
already emitted. 

• This spoils the summation.

First 
emitted 
gluon
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Angle ordered shower

• Use angle instead of 
virtuality as ordering 
parameter.

• This works fine.

• In our derivation, we 
used the fact that 
smaller    and smaller     
implies larger angle.

Line of 
constant angle

k⊥t
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Line of constant kT

kT ordered shower

• We don’t know what
happens when k2

T has
decreased to k2

T ∼ 1/b2.
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Conclusions

• Summation of large logarithms for a given process 
with a given parton shower algorithm is not obvious.

• Things can go wrong.

• It should be proved analytically.

• I might guess that no parton shower algorithm gets 
everything right.

• The virtuality ordered shower used here gets one 
thing right.
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